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Abstract. The aim of this paper is to investigate the coupled oscillations of 
multiple bubbles within a cluster. The interaction between a bubble and the other 
bubbles in a cluster produces an additional mass. For a fixed number of bubbles 
and uniformly distributed ( 1N >> ), in case of a certain value of the bubbles 
number density, we deduce the relations analogous to the Eddington relation 
(between the cluster radius and the bubble radius) and the Sciama relation 
(between the cluster radius and the gravitoacoustic radius) according to Mach's 
Principle. 

 

Keywords: the acoustic world, bubbles cluster, Mach's Principle, Large 
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1. Introduction 

 
Previous study of phenomena induced by acoustic waves in a fluid 

revealed an analogy between the Acoustic World and the Electromagnetic 
World (Simaciu et al., 2018a). 

Acoustic waves transport energy and mass (Simaciu et al., 2016) and 
generate wave packets and bubbles (Alhelfi et al., 2014). Consequently, this 
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yields a rise of the fluid’s inhomogeneities and, subsequently, a shift of the 
refractive index of the fluid. The effect of fluid non-homogeneity in the 
presence of a wave packet and a bubble is the deviation of an acoustic plane 
wave (Simaciu et al., 2018a; Simaciu et al., 2018b; Simaciu et al., 2018c). The 
oscillating bubbles interact through the secondary Bjerknes forces (Barbat et al., 
1999). These forces are analogous to the electrostatic forces for the interaction 
generated by the scattering of sound waves (Simaciu et al., 2019a) and are 
analogous to gravitational forces for the interaction generated by the absorption 
of sound waves (Simaciu et al., 2019b). The secondary Bjerknes forces are 
responsible for generating the clusters of bubbles (Mettin, 2007).  

As we will show in the following, some interesting effects can occur 
when the bubbles within a cluster oscillate in a coupled manner (Ida, 2002; 
Manasseh et al., 2009; Wang et al., 2013). One of the consequences is a growth 
in virtual mass of the oscillating bubble when𝑁𝑁identical bubbles oscillate. This 
additional mass depends on the parameters of the bubble and of the liquid 
(bubble radius 𝑅𝑅0 and the volume density of the fluid 𝜌𝜌) and on the parameters 
of the cluster (cluster radius 𝑅𝑅𝑐𝑐  and density of bubbles 𝑛𝑛𝑐𝑐  or the average 

distance between the bubbles 𝑑𝑑𝑐𝑐 = 𝑛𝑛𝑐𝑐
−1
3 ). 

When the number of the bubbles in the cluster increases, this additional 
mass becomes significantly larger than that of the virtual mass of the bubble 
performing a radial oscillation. 

In the second section of this paper, we will derive the additional mass, 
mentioned above, when the bubbles within a cluster perform coupled oscillations. 

In the third section we will point out that the additional mass can induce 
certain effects to electrostatic kind of acoustic interactions. We also highlight 
the existence of analogous relations with the Eddington relation (Eddington, 
1931; Dirac, 1979) and the Sciama relation (Ibison, 2003; Ibison, 2007) in 
accordance with Mach's Principle. 

Finally, some conclusions are listed in the last section. 
 

2. Dynamics of coupled bubbles within a cluster 
 

2.1. The issue of the interaction of N bubbles 
 

The dynamics of interacting bubbles within a cluster can be described 
with the extended Rayleigh-Plesset equations (Ida, 2002; Manasseh et al., 2009; 
Wang et al., 2013): 

 𝑅𝑅𝑖𝑖𝑅̈𝑅𝑖𝑖 + 3
2
�1 − 𝑅̇𝑅

3𝑢𝑢
� 𝑅̇𝑅𝑖𝑖2 = 1

𝜌𝜌
�
�𝑝𝑝0∞ + 2𝜎𝜎

𝑅𝑅𝑖𝑖
− 𝑝𝑝𝜐𝜐� �

𝑅𝑅0𝑖𝑖
𝑅𝑅𝑖𝑖
�
3𝜅𝜅
− 2𝜎𝜎

𝑅𝑅𝑖𝑖
+ 𝑝𝑝𝜐𝜐

−4𝜇𝜇𝑅̇𝑅𝑖𝑖
𝑅𝑅𝑖𝑖

− (𝑝𝑝0∞ − 𝑝𝑝𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔 𝑡𝑡)
� 

−∑
𝑅𝑅𝑗𝑗
2𝑅̈𝑅𝑗𝑗+2𝑅𝑅𝑗𝑗𝑅̇𝑅𝑗𝑗

2

𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖 .  (1) 
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where 

 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜌𝜌∑
𝑅𝑅𝑗𝑗
2𝑅̈𝑅𝑗𝑗+2𝑅𝑅𝑗𝑗𝑅̇𝑅𝑗𝑗

2

𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖 ≅ 𝜌𝜌∑
𝑅𝑅𝑗𝑗
2𝑅̈𝑅𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖  (2) 

 
the pressure resulting from the radiation scattered and absorbed by the other 
bubbles in the clusters,𝑟𝑟𝑖𝑖𝑖𝑖are the lengths between the centers of the bubbles 𝑖𝑖 
and 𝑗𝑗, 𝑝𝑝𝜐𝜐  is the inner pressure of the bubble, 𝑝𝑝0∞ = 𝑝𝑝0 is the pressure of the 
liquid away from the bubbles, 𝜎𝜎 is the surface tension coefficient of the liquid, 
𝜇𝜇  is the dynamic viscosity coefficient, 𝑅𝑅0𝑖𝑖  is the equilibrium radius of the 𝑖𝑖 
bubble. 

When oscillations have small amplitude 𝑅𝑅𝑖𝑖 = 𝑅𝑅0𝑖𝑖(1 + 𝑥𝑥), therefore 
 

 𝑅̇𝑅𝑖𝑖 = 𝑅𝑅0𝑖𝑖𝑥̇𝑥,  𝑅̈𝑅𝑖𝑖 = 𝑅𝑅0𝑖𝑖𝑥̈𝑥.  (3) 
 
When omitting the pressure 𝑝𝑝𝑖𝑖𝑖𝑖 in the Eq. (1), i.e., the linearized case, 

then the equation has the form  
 

 𝑥̈𝑥 + 2𝛽𝛽𝑖𝑖𝑖𝑖𝑥̇𝑥 + 𝜔𝜔0𝑖𝑖𝑖𝑖
2 𝑥𝑥 = − 𝐴𝐴

𝜌𝜌𝑅𝑅0𝑖𝑖
2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡,  (4) 

 
where natural angular frequency is 
 

 𝜔𝜔0𝑖𝑖𝑖𝑖 = �3𝛾𝛾
𝜌𝜌
�𝑝𝑝0
𝑅𝑅0𝑖𝑖
2 + 2𝜎𝜎

𝑅𝑅0𝑖𝑖
3 � −

2𝜎𝜎
𝜌𝜌𝑅𝑅0𝑖𝑖

3 + 𝜔𝜔4𝑅𝑅0𝑖𝑖
2

𝑢𝑢2�1+
𝜔𝜔2𝑅𝑅0𝑖𝑖

2

𝑢𝑢2 �
�

1
2

≅ 1
𝑅𝑅0𝑖𝑖

�𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
𝜌𝜌
�
1
2 (5) 

 
the whole damping is 
 
 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝜐𝜐𝜐𝜐𝜐𝜐 + 𝛽𝛽𝑡𝑡ℎ𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,  (6) 
 
where radial viscous component 𝛽𝛽𝜐𝜐𝜐𝜐𝜐𝜐, radial thermal component 𝛽𝛽𝑡𝑡ℎ𝑖𝑖𝑖𝑖 and radial 
acoustic component 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 are 
 
 𝛽𝛽𝜐𝜐𝜐𝜐 = 2𝜇𝜇

𝜌𝜌𝑅𝑅0𝑖𝑖
2 , 𝛽𝛽𝑡𝑡ℎ𝑟𝑟 = 2𝜇𝜇𝑡𝑡ℎ

𝜌𝜌𝑅𝑅0𝑖𝑖
2 , 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜔𝜔2𝑅𝑅0𝑖𝑖

2𝑢𝑢�1+
𝜔𝜔2𝑅𝑅0𝑖𝑖

2

𝑢𝑢2 �
 ≅ 𝜔𝜔2𝑅𝑅0𝑖𝑖

2𝑢𝑢
. (7) 

 
When replacing Eq. (3) in Eq. (2), this yield 
 

 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜌𝜌∑
𝑅𝑅0𝑗𝑗
3 ��1+𝑥𝑥𝑗𝑗�

2𝑥̈𝑥𝑗𝑗+2�1+𝑥𝑥𝑗𝑗�𝑥̇𝑥𝑗𝑗
2�

𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗≠𝑖𝑖 ≅ 𝜌𝜌∑

𝑅𝑅0𝑗𝑗
3 𝑥̈𝑥𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗≠𝑖𝑖 . (8) 
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Assuming that bubbles are identical 𝑅𝑅01 = 𝑅𝑅02 =. . . = 𝑅𝑅0𝑖𝑖 = 𝑅𝑅0 , then 
Eq. (8) becomes 
 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑅𝑅03 ∑

𝑥̈𝑥𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖 . (9) 

 
Eq. (4) to which we add the pressure of the scattered radiation (9) 

becomes a system of equations (Ida, 2002; Manasseh et al., 2009) 
 

 𝑥̈𝑥𝑖𝑖 + 2𝛽𝛽𝑖𝑖𝑖𝑖𝑥̇𝑥𝑖𝑖 + 𝜔𝜔0𝑖𝑖𝑖𝑖
2 𝑥𝑥𝑖𝑖 = − 𝐴𝐴

𝜌𝜌𝑅𝑅0𝑖𝑖
2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡 −

1
𝑅𝑅0𝑖𝑖
2 ∑

𝑅𝑅0𝑗𝑗
3 𝑥̈𝑥𝑗𝑗
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗≠𝑖𝑖 .  (10) 

 
For identical bubbles, the systems of Eqs. (10) become 
 

 𝑥̈𝑥𝑖𝑖 + 2𝛽𝛽𝑖𝑖𝑖𝑖𝑥̇𝑥𝑖𝑖 + 𝜔𝜔0𝑖𝑖𝑖𝑖
2 𝑥𝑥𝑖𝑖 = − 𝐴𝐴

𝜌𝜌𝑅𝑅0𝑖𝑖
2 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡 − �∑ 𝑅𝑅0𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁
𝑗𝑗≠𝑖𝑖 � 𝑥̈𝑥𝑖𝑖  (11a) 

or 
 �1 + ∑ 𝑅𝑅0

𝑟𝑟𝑖𝑖𝑖𝑖𝑗𝑗≠𝑖𝑖 � 𝑥̈𝑥𝑖𝑖 + 2𝛽𝛽𝑟𝑟𝑥̇𝑥𝑖𝑖 + 𝜔𝜔0𝑟𝑟
2 𝑥𝑥𝑖𝑖 = − 𝐴𝐴

𝜌𝜌𝑅𝑅02
𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡.  (11b) 

 
When comparing Eqs. (4) and (11b) it is observed that the radiation 

pressure scattered by the other cluster bubbles induces an additional inertial 
term𝑁𝑁𝑐𝑐 = ∑ �𝑅𝑅0

𝑟𝑟𝑖𝑖𝑖𝑖
�𝑁𝑁

𝑗𝑗≠𝑖𝑖 > 0 , i.e., the inertial mass of each oscillating bubble 

increases from 𝑚𝑚 = 4𝜋𝜋𝑅𝑅03𝜌𝜌 at  
 

 𝑚𝑚𝑁𝑁 = 4𝜋𝜋𝑅𝑅03𝜌𝜌 �1 + ∑ 𝑅𝑅0
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗≠𝑖𝑖 � = 𝑚𝑚 + 𝑚𝑚𝑁𝑁𝑐𝑐 ,  

𝑁𝑁𝑐𝑐 = ∑ 𝑅𝑅0
𝑟𝑟𝑖𝑖𝑖𝑖

= 𝑅𝑅0 ∑
1
𝑟𝑟𝑖𝑖𝑖𝑖

𝑁𝑁
𝑗𝑗≠𝑖𝑖 = 𝑅𝑅0𝑆𝑆𝑁𝑁

𝑗𝑗≠𝑖𝑖 .   (12) 
 

The parameter 𝑆𝑆 = ∑ � 1
𝑟𝑟𝑖𝑖𝑖𝑖
�𝑁𝑁

𝑗𝑗≠𝑖𝑖  is called the coupling strength of the 

bubble–bubble interaction (Yasui et al., 2011). 
Thus, the radial oscillation’s inertia for each bubble is also determined 

by the interaction with other bubbles 
 

 𝑚𝑚𝑁𝑁 = 𝑚𝑚 + 𝑚𝑚𝑁𝑁𝑐𝑐 = 𝑚𝑚 + 𝑚𝑚𝑐𝑐 ≅ 𝑚𝑚𝑐𝑐 , 𝑚𝑚𝑐𝑐 = 𝑚𝑚𝑁𝑁𝑐𝑐 , 𝑁𝑁𝑐𝑐 >> 1.  (13) 
 
We note that induced mass,𝑚𝑚𝑁𝑁𝑐𝑐 , is proportional to the virtual mass of 

the bubble. According to the arguments from the section 3.2., we call the 
number𝑁𝑁𝑐𝑐 the acoustic Mach's number. 

It follows that it is not possible to induce an extra/additional mass if the 
virtual mass of the bubble is zero. This condition is also found for the 
phenomenon of induction of mass in the Electromagnetic World (Ibison, 2003). 
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The increase in the mechanical inertia of each bubble within the cluster 
leads to changing the magnitudes of the other parameters of the bubble (see 
section 2.2.). 
 

2.2. Oscillations of the bubbles within a cluster 
 

In order to deduce the oscillations’ parameters of identical bubbles 
within a cluster, we proceed to divide Eq. (11b) against the coefficient of 
acceleration𝑥̈𝑥𝑖𝑖 in order to obtain the equation of the forced oscillator 

 
 𝑥̈𝑥𝑖𝑖 + 2𝛽𝛽𝑟𝑟

�1+∑ 𝑅𝑅0
𝑟𝑟𝑖𝑖𝑖𝑖

𝑗𝑗≠𝑖𝑖 �
𝑥̇𝑥𝑖𝑖 + 𝜔𝜔0𝑟𝑟

2

�1+∑ 𝑅𝑅0
𝑟𝑟𝑖𝑖𝑖𝑖

𝑗𝑗≠𝑖𝑖 �
𝑥𝑥𝑖𝑖 = − 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑡𝑡

𝜌𝜌𝑅𝑅02�1+∑
𝑅𝑅0
𝑟𝑟𝑖𝑖𝑖𝑖

𝑗𝑗≠𝑖𝑖 �
  (14) 

or 
 𝑥̈𝑥𝑁𝑁 + 2𝛽𝛽𝑁𝑁𝑁𝑁𝑥̇𝑥𝑁𝑁 + 𝜔𝜔0𝑁𝑁𝑁𝑁

2 𝑥𝑥𝑁𝑁 = − 𝐴𝐴𝑁𝑁
𝜌𝜌𝑅𝑅02

𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡,  (15) 
 
where we used the following parameters, according also to (12), 
 
 𝜔𝜔0𝑁𝑁𝑁𝑁

2 = 𝜔𝜔0𝑟𝑟
2

1+𝑁𝑁𝑐𝑐
<  𝜔𝜔0𝑟𝑟

2 ,  𝐴𝐴𝑁𝑁 = 𝐴𝐴
1+𝑁𝑁𝑐𝑐

< 𝐴𝐴, 

 𝛽𝛽𝑁𝑁𝑁𝑁 = 𝛽𝛽𝑟𝑟

�1+∑ 𝑅𝑅0
𝑟𝑟𝑖𝑖𝑖𝑖

𝑗𝑗≠𝑖𝑖 �
= 𝛽𝛽𝑟𝑟

1+𝑁𝑁𝑐𝑐
< 𝛽𝛽𝑟𝑟.  (16) 

 
One can see from the above relations that, according to the assumption 

made in section 2.1., the increase of the virtual mass induces a decrease in its own 
natural angular frequency 𝜔𝜔0𝑁𝑁𝑁𝑁

2 <  𝜔𝜔0𝑟𝑟
2 , a decrease of the damping coefficient 

𝛽𝛽𝑁𝑁𝑁𝑁 < 𝛽𝛽𝑟𝑟 as well as a decrease in the amplitude of oscillations 𝐴𝐴𝑁𝑁 < 𝐴𝐴 (Ooi et 
al., 2005). 

Assuming the solution of Eq. (15) is of the form 𝑥𝑥𝑁𝑁 = 𝑎𝑎𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜔𝜔 +
𝜑𝜑𝑁𝑁), it results, according to (Barbat et al., 1999) 

 
 𝑎𝑎𝑁𝑁 = 𝐴𝐴𝑁𝑁

𝜌𝜌𝑅𝑅02��𝜔𝜔2−𝜔𝜔0𝑁𝑁𝑁𝑁
2 �

2+4𝛽𝛽𝑁𝑁𝑁𝑁
2 𝜔𝜔2�

1
2

,  𝜑𝜑𝑁𝑁 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2𝛽𝛽𝑁𝑁𝑁𝑁𝜔𝜔
�𝜔𝜔2−𝜔𝜔0𝑁𝑁𝑁𝑁

2 �
.  (17) 

 
Replacing Eqs. (16) in Eq. (17) yields 
 

 𝑎𝑎𝑁𝑁 = 𝐴𝐴

𝜌𝜌𝑅𝑅02��𝜔𝜔2(1+𝑁𝑁𝑐𝑐)−𝜔𝜔0𝑟𝑟
2 �

2+4𝛽𝛽𝑟𝑟2𝜔𝜔2�
1
2

,  

𝜑𝜑𝑁𝑁 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2𝛽𝛽𝑟𝑟𝜔𝜔
𝜔𝜔2(1+𝑁𝑁𝑐𝑐)−𝜔𝜔0𝑟𝑟

2 .  (18) 
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At the resonance of velocity, 𝜔𝜔 = 𝜔𝜔0𝑁𝑁𝑁𝑁 = 𝜔𝜔0𝑟𝑟

�1+𝑁𝑁𝑐𝑐
< 𝜔𝜔0𝑟𝑟, the amplitude 

and the phase (18) become 
 

 𝑎𝑎𝑁𝑁𝑁𝑁 = 𝐴𝐴
2𝜌𝜌𝑅𝑅02𝛽𝛽𝑟𝑟𝑟𝑟𝜔𝜔0𝑁𝑁𝑁𝑁

,  𝜑𝜑𝑁𝑁𝑁𝑁 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∞ = 𝜋𝜋
2

, (19) 
 
where 𝛽𝛽𝑟𝑟𝑟𝑟 = 𝛽𝛽𝑟𝑟(𝜔𝜔 = 𝜔𝜔0𝑁𝑁𝑁𝑁) and 
 
 𝛽𝛽𝑟𝑟𝑟𝑟 = 𝛽𝛽𝜐𝜐𝜐𝜐 + 𝛽𝛽𝑡𝑡ℎ𝑟𝑟𝑟𝑟 + 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝜇𝜇

𝜌𝜌𝑅𝑅02
+ 2𝜇𝜇𝑡𝑡ℎ(𝜔𝜔=𝜔𝜔0𝑁𝑁𝑁𝑁)

𝜌𝜌𝑅𝑅02
+ 𝜔𝜔0𝑁𝑁𝑁𝑁

2 𝑅𝑅0
2𝑢𝑢

 . (20) 
 

Special case 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 >> 𝛽𝛽𝜐𝜐𝜐𝜐 + 𝛽𝛽𝑡𝑡ℎ𝑟𝑟𝑟𝑟 yields 𝛽𝛽𝑟𝑟𝑟𝑟 ≅ 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜔𝜔0𝑁𝑁𝑁𝑁
2 𝑅𝑅0
(2𝑢𝑢) , 

therefore the amplitude displayed in Eq. (19) becomes 
 

 𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐴𝐴𝐴𝐴
𝜌𝜌𝑅𝑅02𝜔𝜔0𝑁𝑁𝑁𝑁

3 = 𝐴𝐴𝐴𝐴(1+𝑁𝑁𝑐𝑐)
3
2

𝜌𝜌𝑅𝑅0
3𝜔𝜔0𝑟𝑟

3 = 𝐴𝐴𝐴𝐴(1+𝑁𝑁𝑐𝑐)
3
2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
3
2

= 𝐴𝐴(1+𝑁𝑁𝑐𝑐)
3
2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
�𝜌𝜌𝑢𝑢

2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
�
1
2
 (21a) 

or, for 𝑁𝑁𝑐𝑐 >> 1, 

 𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐴𝐴(1+𝑁𝑁𝑐𝑐)
3
2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
�𝜌𝜌𝑢𝑢

2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
�
1
2
≅ 𝐴𝐴𝑁𝑁𝑐𝑐

3
2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
�𝜌𝜌𝑢𝑢

2

𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
�
1
2
. (21b) 

 
When resonance occurs, one can see from Eq. (21b) that amplitude 

𝑎𝑎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 depends on the parameters of the bubble and of the cluster through 𝑁𝑁𝑐𝑐. 
 

2.3. Cluster with uniform distribution of bubbles 
 

We assume a spherical cluster with radius 𝑅𝑅𝑐𝑐 >> 𝑅𝑅0  having a large 
number of bubbles, 𝑁𝑁 >> 1, 

 
 𝑁𝑁 = 4𝜋𝜋𝑅𝑅𝑐𝑐3

3
𝑛𝑛𝑐𝑐 , (22) 

 
with uniformly distributed bubbles and the number density 𝑛𝑛𝑐𝑐 ≅

1
𝑑𝑑𝑐𝑐3

 (here 𝑑𝑑𝑐𝑐  is 
the average distance between the bubbles), results 
 
 𝑁𝑁 = 4𝜋𝜋𝑅𝑅𝑐𝑐3

3𝑑𝑑𝑐𝑐3
. (23) 

 
The sum𝑁𝑁𝑐𝑐 = ∑ �𝑅𝑅0

𝑟𝑟𝑖𝑖𝑖𝑖
�𝑁𝑁

𝑗𝑗≠𝑖𝑖  expressed in Eq. (12) can be approached 

through integral calculation 
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 𝑁𝑁𝑐𝑐 ≅ 𝑅𝑅0 ∫
𝑛𝑛𝑐𝑐𝑑𝑑𝑑𝑑
𝑟𝑟

𝑅𝑅𝑐𝑐
𝑑𝑑𝑐𝑐

= 𝑅𝑅0 ∫ 4𝜋𝜋𝑛𝑛𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟
𝑅𝑅𝑐𝑐
𝑑𝑑𝑐𝑐

= 2𝜋𝜋𝑅𝑅0𝑛𝑛𝑐𝑐(𝑅𝑅𝑐𝑐2 − 𝑑𝑑𝑐𝑐2) = 
2𝜋𝜋𝑅𝑅0�𝑅𝑅𝑐𝑐2−𝑑𝑑𝑐𝑐2�

𝑑𝑑𝑐𝑐3
= 2𝜋𝜋𝑅𝑅0𝑅𝑅𝑐𝑐2

𝑑𝑑𝑐𝑐3
− 2𝜋𝜋𝑅𝑅0

𝑑𝑑𝑐𝑐
≅ 2𝜋𝜋𝑅𝑅0𝑅𝑅𝑐𝑐2

𝑑𝑑𝑐𝑐3
.                                                           (24) 

 
In the following, we will assume that the test bubble is placed in the 

center of the cluster and it interacts with 𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑐𝑐𝑑𝑑𝑑𝑑 bubbles contained in a 
spherical layer having thickness𝑑𝑑𝑑𝑑and surface 4𝜋𝜋𝑟𝑟2. 

For 𝑅𝑅𝑐𝑐 > 𝑑𝑑𝑐𝑐 > 𝑅𝑅0, 𝑁𝑁𝑐𝑐  is less than 𝑁𝑁 
 

 𝑁𝑁𝑐𝑐 ≅
2𝜋𝜋𝑅𝑅0�𝑅𝑅𝑐𝑐2−𝑑𝑑𝑐𝑐2�

𝑑𝑑𝑐𝑐3
= 4𝜋𝜋𝑅𝑅𝑐𝑐3

3𝑑𝑑𝑐𝑐3
3
2
�𝑅𝑅0
𝑅𝑅𝑐𝑐
− 𝑅𝑅0𝑑𝑑𝑐𝑐2

𝑅𝑅𝑐𝑐3
� = 

𝑁𝑁 3
2
�𝑅𝑅0
𝑅𝑅𝑐𝑐
− 𝑅𝑅0𝑑𝑑𝑐𝑐2

𝑅𝑅𝑐𝑐3
� ≅ 𝑁𝑁 3𝑅𝑅0

2𝑅𝑅𝑐𝑐
< 𝑁𝑁.  (25) 

 
When considering the distance from the bubble to the center of the 

cluster, we notice a force acting on each bubble which is directed towards the 
center of the cluster (Eq. 11 from (Wang et al., 2013)). This force is similar to 
the electrostatic force acting on a uniformly distributed charge or to a 
gravitational force acting on a uniformly distributed mass at a distance less than 
that of the radius of the distributed charge or mass (𝑟𝑟0 < 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑐𝑐). This issue 
will be a topic for a further paper. 

 
3. Acoustic interactions in a cluster 

 
3.1. Interaction of electrostatic type 

 
According to (Barbat et al., 1999), the acoustic force for two identical 

bubbles,𝑅𝑅01 = 𝑅𝑅02 = 𝑅𝑅0, is 
 

 𝐹𝐹𝐵𝐵(𝑟𝑟,𝜑𝜑) ≅ − 2𝜋𝜋𝜋𝜋𝜔𝜔
2𝑅𝑅06

𝑟𝑟2
𝑎𝑎2, 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 = 1. (26) 

 
Replacing Eqs. (18) in Eq. (26), with 𝑎𝑎 = 𝑎𝑎𝑁𝑁 and 𝑁𝑁𝑐𝑐 >> 1, yields 
 

 𝐹𝐹𝐵𝐵𝐵𝐵(𝑟𝑟) ≅  −2𝜋𝜋𝜔𝜔2𝑅𝑅02𝐴𝐴2

𝜌𝜌𝑟𝑟2��𝜔𝜔2(1+𝑁𝑁𝑐𝑐)−𝜔𝜔0
2�
2+4𝛽𝛽𝑟𝑟2𝜔𝜔2�

≅   −2𝜋𝜋𝜔𝜔2𝐴𝐴2𝑅𝑅02

𝜌𝜌𝑟𝑟2��𝜔𝜔2𝑁𝑁𝑐𝑐−𝜔𝜔0
2�
2+4𝛽𝛽𝑟𝑟2𝜔𝜔2�

 . (27) 

 

When resonance occurs, 𝜔𝜔2 = 𝜔𝜔0𝑁𝑁𝑁𝑁
2 ≅ 𝜔𝜔0𝑟𝑟

2

𝑁𝑁𝑐𝑐
, then 

 

 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵(𝑟𝑟) ≅   −𝜋𝜋𝐴𝐴2𝑅𝑅02

2𝜌𝜌𝑟𝑟2𝛽𝛽𝑟𝑟2(𝜔𝜔0𝑁𝑁)
=   −𝜋𝜋𝐴𝐴2𝑅𝑅02

2𝜌𝜌𝑟𝑟2� 2𝜇𝜇
𝜌𝜌𝑅𝑅0

2+
2𝜇𝜇𝑡𝑡ℎ�𝜔𝜔=𝜔𝜔0𝑁𝑁𝑁𝑁�

𝜌𝜌𝑅𝑅0
2 +

𝜔𝜔0𝑁𝑁𝑁𝑁
2 𝑅𝑅0
2𝑢𝑢 �

2 ≅ 

     −2𝜋𝜋𝐴𝐴2𝑢𝑢2

𝜌𝜌𝑟𝑟2𝜔𝜔0𝑁𝑁𝑁𝑁
4 = −2𝜋𝜋𝐴𝐴2𝑢𝑢2𝑁𝑁𝑐𝑐2

𝜌𝜌𝑟𝑟2𝜔𝜔0𝑟𝑟
4 .  (28) 



66                                                             Ion Simaciu et al. 
 

 

Adopting the natural angular frequency from Eq. (5) then Eq. (28) 
changes into 

 
 𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵(𝑟𝑟) ≅ −2𝜋𝜋𝐴𝐴

2𝜌𝜌𝑢𝑢2𝑅𝑅04𝑁𝑁𝑐𝑐2

𝑟𝑟2𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒
2 = 𝑁𝑁𝑐𝑐2𝐹𝐹𝐵𝐵𝐵𝐵(𝑟𝑟)  >> 𝐹𝐹𝐵𝐵𝐵𝐵(𝑟𝑟), (29) 

 
i.e., a much higher force is obtained than that acting between two bubbles that 
are not found in a cluster. 
 

3.2. The Mach’s Principle in Acoustic World 
 

The analysis of the mechanical inertia induction phenomenon by 
coupling the oscillations of the bubbles in a cluster (section 2.2.) leads to the 
hypothesis that this phenomenon is analogous to the one modeled by Sciama 
(Sciama, 1953) for the mechanical inertia in the Universe (Electromagnetic 
World), according to Mach's Principle. 

According to Eqs. (12) and (13), the additional mass term is a term 
according to the Mach’s Principle (Sciama, 1953; Simaciu et al., 1987): 
mechanical inertia, as a property of a body, is also determined by the 
interaction with the other bodies in the Universe. In this case, the interaction 
between the bubbles that oscillate in phase is of electroacoustic nature. This 
interaction propagates with the velocity of acoustic waves such that 𝑅𝑅𝑐𝑐 = 𝑢𝑢𝜏𝜏𝑐𝑐 

For a continuous distribution of bubbles into a cluster, according to Eq. 
(25), the rate of inertia increase is the acoustic Mach's number 

 
 𝑁𝑁𝑐𝑐 = 𝑁𝑁 3𝑅𝑅0

2𝑅𝑅𝑐𝑐
≅ 𝑁𝑁𝑅𝑅0

𝑅𝑅𝑐𝑐
= 𝑁𝑁𝑅𝑅0

𝑢𝑢𝜏𝜏𝑐𝑐
, 𝑅𝑅𝑐𝑐 >> 𝑅𝑅0. (30) 

 

This relationship, for 𝑁𝑁𝑐𝑐 = 𝑁𝑁
1
2, is analogous to the relationship between 

the radius of the universe and the electromagnetic radius of the electron 

obtained by Eddington (Eddington, 1931; Dirac, 1979), 𝑅𝑅𝑈𝑈 = 𝑁𝑁𝑈𝑈
1
2𝑅𝑅𝑒𝑒,  

 

 𝑅𝑅𝑐𝑐𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑅𝑅0 → 𝑅𝑅𝑐𝑐𝑁𝑁
1
2 = 𝑁𝑁𝑅𝑅0 → 𝑅𝑅𝑐𝑐 = 𝑁𝑁

1
2𝑅𝑅0,  (31) 

 
that is, there is a connection between the radius of the cluster and the radius of 
the bubble (electroacoustic radius).  

The Eddington relation together with the relation obtained by Sciama 
(Eq. (7) from paper (Sciama, 1953)) for gravitational interaction of particles in 
the Universe (Electromagnetic World) 

 
 𝐺𝐺𝑛𝑛𝑈𝑈𝑚𝑚𝑈𝑈𝜏𝜏2 ≅

𝐺𝐺𝑚𝑚𝑈𝑈
𝑐𝑐2

𝑁𝑁𝑈𝑈
𝑅𝑅𝑈𝑈
3 (𝑐𝑐𝑐𝑐)2 = 𝑁𝑁𝑈𝑈𝑅𝑅𝑔𝑔

𝑅𝑅𝑈𝑈
≅ 1, 𝑅𝑅𝑈𝑈 = 𝑐𝑐𝑐𝑐, (32) 
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involves a relationship between the electromagnetic radius of the electron and 
the gravitational radius of the proton (the gravitational radius of the proton 
is 𝑅𝑅𝑔𝑔 = 𝐺𝐺𝑚𝑚𝑈𝑈

𝑐𝑐2
) 

 𝑅𝑅𝑒𝑒 = 𝑁𝑁𝑈𝑈
1
2𝑅𝑅𝑔𝑔. (33) 

 
By analogy, we hypothesize that in the Acoustic Universe, there is also 

a relationship between the radius of the bubble (electroacoustic radius) and the 
gravitoacoustic radius of bubble 

 
 𝑅𝑅0 = 𝑁𝑁

1
2𝑅𝑅𝑎𝑎𝑎𝑎. (34) 

 
Substituting this relation in the Eq. (31) we obtain a Sciama relation in 

the Acoustic World 
 𝑅𝑅𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑅𝑅𝑎𝑎𝑎𝑎.  (35) 
 

We noted this radius with the index𝑔𝑔, because this is the gravitoacoustic 
radius of the cluster. It follows that the condition 𝑁𝑁𝑐𝑐 = 𝑁𝑁

1
2 involves the 

compression of the cluster to its gravitoacoustic radius. 
For an Acoustic Universe consisting of identical bubbles (analogous to 

the toy universe model proposed by Ibison (Ibison, 2007)), the two radii 
correspond to the same kind of particle. For this reason, we will use relation 
(34) in a future paper to identify the gravitational mass and the gravitational 
constant for the gravitoacoustic interaction. 

 
4. Conclusions 

 
The study of the coupling oscillations of the bubbles, contained within a 

cluster, reveals the effect of increase the inertia of any bubble from the cluster. 
This increase is due to the scattered acoustic radiation by the other bubbles of 
the cluster. 

For a large number of identical bubbles uniformly distributed, the 
induced mass,  𝑚𝑚𝑁𝑁𝑐𝑐 , causes the decrease of the natural angular frequency 
(𝜔𝜔0𝑁𝑁𝑁𝑁

2 <  𝜔𝜔0𝑟𝑟
2 )  and the damping coefficient (𝛽𝛽𝑁𝑁𝑁𝑁 < 𝛽𝛽𝑟𝑟)  and, implicitly, the 

modification of the expression of the electroacoustic force between two bubbles 
inside the cluster. 

If the cluster is compressed so that the acoustic Mach's number is 𝑁𝑁𝑐𝑐 =
𝑁𝑁

1
2, the surprising result of relations analogous to the Eddington and Sciama 

relations is obtained. 
The results of this paper support the hypothesis of the analogy between 

the physical-mathematical models of the Acoustic World and the 
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Electromagnetic World. These results suggest that in the Electromagnetic World 
the internal oscillations of the fundamental particles are coupled through the 
electromagnetic interaction. 

In a future paper we will verify the results obtained by numerical 
simulations in order to compare them with the results from the related 
specialized literature of the authors from abroad. The results obtained in this 
article will be used to study the interaction between two clusters with a different 
number of bubbles, analogous to the interaction between two bodies in the 
Electromagnetic World. We will also try to develop, in the Electromagnetic 
World, a non-point electrically charged particle model, like an oscillating 
bubble in the physical vacuum. 
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PRINCIPIUL LUI MACH ÎN LUMEA ACUSTICĂ 

 
(Rezumat) 

 
Scopul acestei lucrări este de a investiga oscilațiile cuplate ale mai multor bule 

dintr-un cluster. Interacțiunea dintre o bulă și celelalte bule dintr-un grup produce o 
masă suplimentară. Pentru un număr fix de bule uniform distribuite ( 1N >> ), în cazul 
unei anumite valori a densității numărului de bule, deducem relațiile analoge relației 
Eddington (între raza clusterului și raza bulei) și relația Sciama (între raza clusterului şi 
raza gravitoacustică) conform principiului lui Mach. 
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